THE SECOND	Project: Reinforced Pile Cap Design, in accordance with (BS8110:Part1:1997)			Job Ref.		
GEODOMISI Ltd. GEODOMISI Ltd Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for	Civil & Geotechnical Engineering			Sheet no./r	ev. 1	
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel: (+30) 210 5231827, 210 5711861 – Fox:+30 210 5711461 – Mobile: (+30) 6936425722 & (+44) 7585939944, <u>costos@sochpezis.info</u>	Calc. by Dr.C.Sachpazis	Date 10/08/2013	Chk'd by -	Date	App'd by	Date

RC PILE CAP DESIGN (BS8110:PART1:1997)

Pile	Can	Design	– Truss	Method
гпе	Cap	Dealgh	- 11035	Method

Design Input - 4 Piles - With Eccentricity	
Number of piles;	N = 4
ULS axial load;	F _{uls} = <u>1850.0</u> kN
Pile diameter;	φ = <u>350</u> mm
Pile spacing, both directions;	s = <u>900</u> mm
Eccentricity from centroid of pile cap;	e _x = <u>75</u> mm
Eccentricity from centroid of pile cap;	e _y = <u>50</u> mm

	ar	
\sim	-	
GE	ODOMISI Ltd.	

Project: Reinforced Pile Cap Design, in accordance with (BS8110:Part1:1997)

GEODOMISI Ltd Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for	Section	Civil & Geote	chnical Engineering	g	Sheet no./rev. 1		
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (-30) 210 5231827, 210 5711263 - Fox: -30 210 571161 - Mobile: (-30) 6936425722 & (-44) 7585939944, <u>costos@sochpazis.info</u>	Calc. by Dr.C.Sachpazis	Date 10/08/2013	Chk'd by -	Date	App'd by	Date	
Characteristic load in	pile, φ1;	•	F _{char_pile_1} = F _{char} >	< (0.5 × s - e _x)/s >	< (0.5 × s - e _y)/s	s =	
<u>291.7</u> kN							
Characteristic load in	pile,		$F_{char_pile_2} = F_{char}$	< (0.5 × s - e _x)/s >	$(0.5 \times s + e_y)/$	s	
= <u>364.6</u> kN							
Characteristic load in	pile, _{\$} 3;		$F_{char_pile_3} = F_{char}$	$<$ (0.5 \times s + e _x)/s	\times (0.5 \times s + e _y)	/s	
= <u>510.4</u> kN							
Characteristic load in	pile, _{\$} 4;		$F_{char_pile_4} = F_{char}$	$<$ (0.5 \times s + e _x)/s	\times (0.5 \times s - e _y)/	s	
= <u>408.3</u> kN							
Pile cap overhang;			e = <u>200</u> mm				
Overall length of pile cap;		L = s +					
Overall width of pile cap;		b = s + φ +2 × e = <u>1650</u> mm					
Overall height of pile cap;		h = <u>450</u> mm					
Dimension x of loaded area;		x = <u>300</u> mm					
Dimension y of loaded	l area;		y = <u>300</u> mm				
Cover							
Concrete grade;			f _{cu} = <u>40.0</u> N/mm ²				
Nominal cover;			c _{nom} = <u>40</u> mm				
Tension bar diameter;			D _t = <u>16</u> mm				
Link bar diameter;			L _{dia} = <u>12</u> mm				
Depth to tension steel;			d = h – c _{nom} - L _{dia} - D _t /2 = <u>390</u> mm				
Pile Cap Forces							
Maximum compressio	n within pile cap);	$F_c = max(F_{c1}, F_{c2},$	F _{c3} , F _{c4}) = <u>1034</u>	<u>.4</u> kN		
Maximum tension with	nin pile cap;		$F_t = max(F_{t1}, F_{t2},$	F _{t3} , F _{t4}) = <u>614.9</u> H	٨N		
Compression In Pile	Cap - Suggest	ed Additiona	l Check				
Check compression d	iagonal as an ur	nreinforced co	lumn, using a core	equivalent to pil	e diameter		

Compressive force in pile cap;

 $P_c = 0.4 \times f_{cu} \times \pi \times \phi^2/4 = 1539.4 \text{ kN}$

PASS Compression Cl. 3.8.4.3

Tension In One Truss Member

Characteristic strength of reinforcement; Partial safety factor for strength of steel; Required area of reinforcement; Provided area of reinforcement; Tension in truss member;

f_y = <u>500</u> N/mm² γ_{ms} = <u>1.15</u> $A_{s_req} = F_t / (1/\gamma_{ms} \times f_y) = 1414 \text{ mm}^2$ $A_{s_prov} = A_{st} = 1608 \text{ mm}^2$ $P_t = (1/\gamma_{ms} \times f_y) \times A_s \text{ prov} = 699.3 \text{ kN}$

PASS Tension Cl. 3.11.4.2

Max / Min Areas of Reinforcement - Considering A Strip Of Cap

Minimum required area of steel; Maximum allowable area of steel; $A_{st_min} = k_t \times A_c = \underline{439} \text{ mm}^2$ $A_{st max} = 4 \% \times A_{c} = 13500 \text{ mm}^{2}$ Area of tension steel provided OK

	Project: Reinforced Pile Cap Design, in accordance with Job Ref. (BS8110:Part1:1997)					
GEODOMISI Ltd. GEODOMISI Ltd Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for	Section	Civil & Geotech	nical Engineerin	g	Sheet no./r	ev. 1
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel: (-30) 210 523187, 210 5711263 - Fox: -30 210 571161 - Mobile: (-30) 6936425722 & (-44) 7585939944, <u>costas@sachpazis.info</u>	Calc. by Dr.C.Sachpazis	Date 10/08/2013	Chk'd by -	Date	App'd by	Date

Cl. 3.12.6 & Table 3.25

Beam Shear

Check shear stress on the sections at distance ϕ / 5 inside face of piles.

Cl. 3.11.4.3 & fig. 3.23

Applied shear stress to be checked across each pile pair

Effective width of pile cap in shear allowing for Clause 3.11.4.4 (b)

 $\begin{array}{l} b_v = \text{if } (s \leq 3 \times \varphi, \, s + \varphi + 2 \times e, \, 3 \times \varphi + 2 \times \text{min}(\, 1.5 \times \varphi, \, \varphi \, / \, 2 + e \,) \,) = \underline{1650} \, \, \text{mm} \\ v_1 = V_1 / (b_v \times d) = \underline{1.68} \, \, \text{N/mm}^2 \\ v_2 = V_2 / (b_v \times d) = \underline{1.20} \, \, \text{N/mm}^2 \\ v_3 = V_3 / (b_v \times d) = \underline{1.60} \, \, \text{N/mm}^2 \\ v_4 = V_4 / (b_v \times d) = \underline{1.28} \, \, \text{N/mm}^2 \\ v_{\text{allowable}} = \text{min} \, ((0.8 \, N^{1/2} / \text{mm}) \times \sqrt{(f_{\text{cu}})}, \, 5 \, \, \text{N/mm}^2) = \end{array}$

5.00 N/mm²

Shear stress - OK

Cl. 3.4.5.2

Design concrete shear strength

 $\begin{array}{ll} \mbox{Percentage of reinforcement;} & r = 100 \times 2 \times A_{s_prov} \mbox{/}(b_v \times d) = \underline{0.50} \\ \mbox{From BS8110-1:1997 Table 3.8;} \\ & v_{c_25} = 0.79 \times r^{1/3} \times max(0.67, \mbox{(400 mm/d)}^{1/4}) \times 1.0 \ \mbox{N/mm}^2 \ \mbox{1.25} = \underline{0.50} \ \mbox{N/mm}^2 \\ \mbox{Shear enhancement - Cl. 3.4.5.8 and fig. 3.5;} & v_c = v_{c_25} \times (\ \mbox{min}(f_{cu}, \ 40 \ \mbox{N/mm}^2) \mbox{/25 N/mm}^2)^{1/3} = \underline{0.59} \ \mbox{N/mm}^2 \\ \mbox{Case 1;} & a_{v_1} = min(2 \times d, \ max((s/2 - \phi/2 + \phi/5 - e_x - x/2), \ 0.1 \ \mbox{mm})) = \underline{120} \ \mbox{mm} \\ & v_{c\ enh\ 1} = 2 \times d \times v_c/a_{v\ 1} = \underline{3.84} \ \mbox{N/mm}^2 \end{array}$

Case 2;

mm)) = <u>270</u> mm

Case 3;

mm)) = <u>145</u> mm

$v_{c_enh_3} = 2 \times d \times v_c/a_{v_3} = 3.18 \text{ N/mm}^2$
<u>ncrete shear strength - OK, no links reqd. for Case 3</u>
$a_{y,4} = min(2 \times d, max((s/2 - \phi/2 + \phi/5 + e_y - y/2), 0.1)$

Case 4; mm)) = <u>245</u> mm

> $v_{c_{enh_{4}}} = 2 \times d \times v_c/a_{v_{4}} = 1.88 \text{ N/mm}^2$ Concrete shear strength - OK, no links regd. for Case 4

> <u>Concrete shear strength - OK, no links reqd. for Case 1</u> $a_{v 2} = min(2 \times d, max((s/2 - \phi/2 + \phi/5 + e_x - x/2), 0.1)$

> $v_{c_{enh_2}} = 2 \times d \times v_c/a_{v_2} = 1.71 \text{ N/mm}^2$ <u>Concrete shear strength - OK, no links reqd. for Case 2</u> $a_{v_3} = \min(2 \times d, \max((s/2 - \phi/2 + \phi/5 - e_v - v/2), 0.1)$

> > Table 3.16

Note: If no links are provided, the bond strengths for **PLAIN** bars must be used in calculations for anchorage and lap lengths.

GEODOMISI Ltd. GEODOMISI Ltd Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for	Section Civil & Geotechnical Engineering				Sheet no./rev. 1	
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax:+30 210 5711461 - Moble: (+30) 6936425722 & (+44) 7585939944, <u>costac@achpais.info</u>	Calc. by Dr.C.Sachpazis	Date 10/08/2013	Chk'd by -	Date	App'd by	Date

Cl. 3.12.8.3

Local Shear At Concentrated Loads (Cl 3.7.7)

Total length of inner perim. at edge of loaded area;	u ₀ = 2 × (x + y) = <u>1200</u> mm
Assumed average depth to tension steel;	d _{av} = d - D _t = <u>374</u> mm
Max shear effective across perimeter;	V _p = F _{uls} = <u>1850.0</u> kN
Stress around loaded area;	$v_{max} = V_p / (u_0 \times d_{av}) = $ <u>4.12</u> N/mm ²
Allowable shear stress;	$v_{allowable}$ = min((0.8 N ^{1/2} /mm) × $\sqrt{(f_{cu})}$, 5 N/mm ²) =
5.00 N/mm ²	

Shear stress - OK

Cl. 3.4.5.2

Clear Distance Between Bars In Tension (Cl 3.12.11.2.4)

Maximum / Minimum allowable clear distances between tension bars considering a strip of cap Actual bar spacing;

spacing _{bars} = max(0mm, (b	o _{ccs} - n _{surfaces} × (c _{adopt} + L _{dia}) - D _t)/(L _{nt} - 1) - D _t) = <u>75</u> mm
Maximum allowable spacing of bars;	$spacing_{max} = min((47000 \text{ N/mm})/f_s, 300 \text{ mm}) = 160$
mm	
Minimum required spacing of bars;	spacing _{min} = h _{agg} + 5 mm = <u>25</u> mm

Bar spacing OK

Clear Distance Between Face Of Beam And Tension Bars (Cl 3.12.11.2.5)

Distance to face of beam;	$Dist_{edge} = c_{adopt} + L_{dia} + D_t/2 = 60$ mm
Design service stress in reinforcement;	$f_s = 2 \times f_y \times A_{s_req} / (3 \times A_{s_prov} \times \beta_b) = 293.1 \text{ N/mm}^2$
Max allowable clear spacing;	Spacing _{max} = min((47000 N/mm)/f _s , 300 mm) = <u>160</u>
mm	
Max distance to face of beam;	Dist _{max} = Spacing _{max} /2 = <u>80</u> mm
	Max distance to beam edge check - OK

Anchorage Of Tension Steel

Anchorage factor;	φ _{factor} = <u>35</u>
Type of lap length;	lap_type = <u>"tens_lap"</u>
Type of reinforcement;	reft_type = <u>"def2_fy500"</u>
Minimum radius;	r _{bar} = <u>32</u> mm
Minimum end projection;	P _{bar} = <u>130</u> mm
Minimum anchorage length or lap length req'd;	$L_{\text{table 3.27}} = \phi_{\text{factor}} \times D_t = \underline{560} \text{ mm}$
Check anchorage length to cl. 3.12.9.4 (b);	L _{cl. 3.12.9.4} = 12 × D _t + d/2 = <u>387</u> mm
Required minimum effective anchorage length;	$L_a = max(L_{table 3.27}, L_{cl. 3.12.9.4}) = 560 \text{ mm}$

Check bearing stress on minimum radius bend

Note that the bars must extend at least 4D past the	bend
Force per bar at bend;	F _{bt} = F _t / L _{nt} = <u>76.9</u> kN
Bearing stress;	$f_{bt} = F_{bt} / (r_{bar} \times D_t) = 150.12 \text{ N/mm}^2$
Edge bar centres;	$s_{ext} = c_{adopt} + D_t = \underline{56} mm$

Project: Reinforced Pile Cap Design, in accordance with (BS8110:Part1:1997)

GEODOMISI Ltd Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939344, center@techpazis.info	Section Civil & Geotechnical Engineering				Sheet no./rev. 1	
	Calc. by Dr.C.Sachpazis	Date 10/08/2013	Chk'd by -	Date	App'd by	Date
Edge maximum allowable bearing stress: $f_{\text{st max out}} = 2 \times f_{\text{st}} / (1 + 2x(D_{\text{st}} / s_{\text{out}})) = 50.91$						

kimum allowable bearing stress; Eage m

N/mm²

Internal bar centres;

Internal maximum allowable bearing stress; N/mm²

 $\mathbf{T}_{bt_max_ext} = 2 \times \mathbf{T}_{cu} / (1 + 2 \times (\mathbf{D}_t / \mathbf{S}_{ext}))$

 $s_{int} = spacing_{bars} + D_t = \underline{91} mm$ $f_{bt_max_int} = 2 \times f_{cu} / (1 + 2 \times (D_t / s_{int})) = 59.19$

FAIL - Bearing stress on minimum radius bend exceeds maximum allowable

Deflection Check (Cl 3.4.6)				
Redistribution ratio;	$\beta_b = 1.0$			
Design service stress in tension reinforcement;	$f_s = 2 \times f_y \times A_{s_req} / (3 \times A_{s_prov} \times \beta_b) = 293.1 \text{ N/mm}^2$			
Modification for tension reinforcement;				
factor _{tens} = min(2, 0.55 + (477 N/mm ² - f _s)/(120 × (0.9 N/mm ² + F _t /(b×d)))) = <u>1.376</u>				
Modified span to depth ratio;	<pre>modf_{span_depth} = factor_{tens} × basic_{span_depth} = <u>27.5</u></pre>			
Span of pile cap for deflection check;	L _s = <u>900</u> mm			
Actual span to depth ratio;	$actual_{span_{depth}} = L_s /d = 2.31$			
	PASS - Deflection			